Source code for pyctools.components.colourspace.histogramequalisation

#  Pyctools - a picture processing algorithm development kit.
#  http://github.com/jim-easterbrook/pyctools
#  Copyright (C) 2016-19  Pyctools contributors
#
#  This program is free software: you can redistribute it and/or
#  modify it under the terms of the GNU General Public License as
#  published by the Free Software Foundation, either version 3 of the
#  License, or (at your option) any later version.
#
#  This program is distributed in the hope that it will be useful,
#  but WITHOUT ANY WARRANTY; without even the implied warranty of
#  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
#  General Public License for more details.
#
#  You should have received a copy of the GNU General Public License
#  along with this program.  If not, see
#  <http://www.gnu.org/licenses/>.

__all__ = ['HistogramEqualisation']
__docformat__ = 'restructuredtext en'

import cv2
import numpy

from pyctools.core.config import ConfigBool, ConfigEnum, ConfigFloat
from pyctools.core.base import Transformer
from pyctools.core.types import pt_float
from .gammacorrectioncore import apply_transfer_function

[docs] class HistogramEqualisation(Transformer): """Histogram equalisation. Converts the RGB input to luminance and equalises it, then applies the same per-pixel gain to the RGB data. The ``function`` output emits the transfer function data. It can be connected to the :py:class:`~pyctools.components.io.plotdata.PlotData` component. ============ ===== ==== Config ============ ===== ==== ``weight_R`` float RGB to Y matrix red weight. ``weight_G`` float RGB to Y matrix green weight. ``weight_B`` float RGB to Y matrix blue weight. ============ ===== ==== """ outputs = ['output', 'function'] #: def initialise(self): self.config['weight_R'] = ConfigFloat(value=0.2126, decimals=4) self.config['weight_G'] = ConfigFloat(value=0.7152, decimals=4) self.config['weight_B'] = ConfigFloat(value=0.0722, decimals=4) def transform(self, in_frame, out_frame): self.update_config() weight_R = pt_float(self.config['weight_R']) weight_G = pt_float(self.config['weight_G']) weight_B = pt_float(self.config['weight_B']) # get data data = in_frame.as_numpy(dtype=pt_float)[:, :, 0:3] # calculate pseudo-luminance lum_in = numpy.dot(data, numpy.array([weight_R, weight_G, weight_B])) # compute normalised histogram hist, edges = numpy.histogram(lum_in, bins=64, density=True) # generate transfer function by integrating histogram gain = 255.0 * 255.0 / float(len(hist)) acc = 0.0 x = [] y = [] for i in range(len(hist)): x.append(edges[i]) y.append(acc) acc += hist[i] * gain x.append(edges[-1]) y.append(acc) x = numpy.array(x, dtype=pt_float) y = numpy.array(y, dtype=pt_float) # equalise luminance lum_out = numpy.atleast_3d(lum_in.copy()) apply_transfer_function(lum_out, x, y) # apply same per-pixel gain to image out_frame.data = data * lum_out / numpy.atleast_3d(lum_in) # add audit audit = out_frame.metadata.get('audit') audit += 'data = HistogramEqualisation(data)\n' out_frame.metadata.set('audit', audit) # send transfer function func_frame = self.outframe_pool['function'].get() func_frame.initialise(in_frame) func_frame.data = numpy.stack((x, y)) func_frame.type = 'func' audit = func_frame.metadata.get('audit') audit += 'data = HistogramEqualisationFunction()\n' func_frame.metadata.set('audit', audit) self.send('function', func_frame) return True